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ABSTRACT
The emergence of programmable switches such as the Intel
Tofino has made it possible, in theory, to implement many
network monitoring applications directly in the network
data plane. In practice, however, such implementations are
often more challenging than expected. A key difficulty is that
such applications often depend, in part, on recognizing traffic
patterns that are easy to specify as a deterministic finite state
automaton (a DFA) but hard to implement thanks to stringent
hardware constraints: to maximize throughput and avoid
race conditions, state machine updates must be completed in
a single Tofino pipeline stage, but the limited computational
resources make finding an implementation a challenging
puzzle. This paper presents a solution to such puzzles—a
general framework for synthesizing DFA implementations
automatically. A key insight is that such a synthesis system
is free to renumber state machine states and implement tran-
sitions using any available arithmetic or logical operations
over that renumbering, provided the resulting implemen-
tation is semantically equivalent to the input specification.
To produce such a synthesizer, we model the required state
machine semantics and the available single-stage switch op-
erations using SMT constraints. An off-the-shelf SMT solver
finds a solution to the constraints, and this solution is then
translated to P4 code. We evaluate the effectiveness of our
methods by synthesizing state machines for a variety of
useful applications, including those that monitor TCP hand-
shakes and video conference streams.
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1 INTRODUCTION
Many network programming tasks must track the state of a
connection or protocol across a series of packets that flow
through the network. For instance, one may want to moni-
tor TCP connections to detect errors, provide security, bill
consumers, collect statistics, or identify attacks. In such a sce-
nario, a system that identifies the canonical 3-way TCP hand-
shake may categorize the connection as “normal,” whereas
deviations from the protocol will indicate security or perfor-
mance anomalies that warrant further scrutiny [2]. Table 1
presents several other applications.
While it is often simple to specify expected behavior of

these protocols using regular expressions or finite state ma-
chines (DFAs), implementing such specifications correctly,
at line rate, in modern programmable switches can be sur-
prisingly challenging. For example, the Intel Tofino [6], and
other ASICs that implement the PISA architecture [3], are
structured as a series of stages. Each stage contains its own
local memory, which is inaccessable to other stages, as well
as a small set of arithmetic-logic units that may perform
simple computations. Hence, in general, to process pack-
ets at line rate while maintaining a state machine, the state
machine implementation must reside in just a single stage
of the pipeline, and every state machine transition must
be implemented using one of the small number of possible
computations available. In practice, the array of constraints
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Name Description

TCP Handshake Track the 3-way handshake packets during the
setup of a TCP connection.

Video Conference Track the set of active participants as they join
and leave a video call.

Mobile Device Track the state of mobile devices by observing
signaling packets in cellular core networks.

Fingerprinting [10] Classify the content of encrypted traffic by ob-
serving packet size patterns of a session.

Table 1: State machines in example network monitor-
ing applications

facing the programmer is daunting, and it takes substantial
creativity, time, and effort to find an implementation.
To solve this problem systematically for the community,

we developed a tool to synthesize P4 implementations of
state machines automatically. Our key insight is that many
state machines may be implemented more efficiently in a
constrained PISA architecture when a new numbering of
their states is chosen. When a state space is renumbered, the
transitions between states may suddenly be implementable
using available (and perhaps unexpected) arithmetic or logi-
cal operations. For instance, a transition from state 5 to state
7 may suddenly be implementable (perhaps as a left-shift
operation), along with all other transitions, if a state renum-
bering transforms the requirement into a transition from 4
to 8. In essence, we exploit the fact that a particular state
machine is isomorphic to, and semantically indistinguishable
from, a set of other state machines. Our synthesizer should
be free to choose any semantically equivalent implemen-
tation that fits the constraints of a device like the Tofino.
Moreover, while enumerating possible state numberings is
a challenging, tedious, and error-prone process for humans,
it can be implemented by encoding the state machine and
hardware constraints as an SMT query and deploying an
off-the-shelf solver to find a solution to the logical puzzle.
In the rest of this paper, we explain our DFA synthesis

algorithm in more depth and demonstrate that it works well
on a range of practical examples. Indeed, our prototype can
synthesize implementations of DFAs with dozens of states
and transitions. Depending on the size and complexity of
the DFA, synthesis sometimes takes just a few seconds and
sometimes a few minutes. For pedagogic purposes, the focus
of this paper is on the synthesis of a single state machine.
However, in practice, it is just as easy to implement an array
of state machines, with each state machine in the array imple-
menting the same transition system, but being used to track
the state of a separate flow. The number of flows supported
by such an array of state machines depends on the hardware
and will be the same as the number of flows supported by
any other data plane switch program with per-flow state.

Our prototype code is publicly available on GitHub1.
1https://github.com/Princeton-Cabernet/DFA-synthesis

2 RUNNING STATE MACHINES UNDER
MEMORY UPDATE CONSTRAINTS

In order to achieve high throughput and low forwarding
latency, high-speed programmable switches based on the
Protocol Independent Switch Architecture (PISA) [3] use
a pipeline architecture in the data plane and impose strict
requirements on register memory updates. To avoid any
memory access hazards, specific register memory regions are
only accessible from a particular pipeline stage. As the switch
processes a packet within a pipeline stage, it can run a micro-
program called a Register Action to perform a Read-Modify-
Write operation on the value stored in register memory.

Each Register Action performs very simple computations.
In Figure 2, we show simplified pseudocode illustrating its
capability. It first performs a comparison between 𝑟 , the
old value stored in memory, and a constant value or a field
from the packet. Depending on the result, it branches and
performs an arithmetic or logical operation between 𝑟 and
another expression, saving the new value 𝑟 ′ in the same
register memory. Here, the expressions are a constant or a
variable in the packet’s header or metadata. Note that the
expression’s value is given before we execute the Register
Action and cannot depend on the in-memory value 𝑟 . We
can pre-program several different Register Actions (up to
4 for the Tofino switch) for a single register memory, and
choose one of them to execute for each packet.

One naive way to implement a DFA in the data plane is to
store the state in the register memory, and program the state
transition rules as a match-action lookup table. To process
a packet, we: (1) read the state from register memory, (2)
consult the transition lookup table to obtain the new state,
and (3) write the new state to the same register memory.
However, we cannot both read the current state and con-
sult the lookup table in the same hardware pipeline stage. If
we read the old state in the Register Action and query the
lookup table in the next pipeline stage, we must recirculate
the packet to write the new state, which lowers the pipeline’s
throughput. Furthermore, recirculation leads to a race condi-
tion between the delayed memory write (step 3) and reads
made by future packets (step 1), possibly causing errors.
Therefore, our goal is to implement the state transition

in a single stage of the pipeline. That means we must finish
the state transition in a Register Action without the help of

If 𝑟 cmp sym :
𝑟 ′← 𝑟 op sym

Else:
𝑟 ′← 𝑟 op sym

sym ∈ { constant,
header,
metadata }

cmp ∈ { ≥, =, ≤, ≠}
op ∈ { +,-,|,&,⊕ }

Figure 2: Pseudocode of a simple Register Action.
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Figure 3: A DFA that tracks the set of participants in a
video call, with up to 3 users (self-loops omitted).

State Number

∅ 0

{A} 1

{B} 2

{C} 3

{A,B} 4

{A,C} 5

{B,C} 6

{A,B,C} 7

(a) Naive mapping.

State Number

∅ 0 = 0b000

{A} 4 = 0b100

{B} 2 = 0b010

{C} 1 = 0b001

{A,B} 6 = 0b110

{A,C} 5 = 0b101

{B,C} 3 = 0b011

{A,B,C} 7 = 0b111

(b) A better mapping.

Figure 4: Two state-to-number mappings. With (b),
state transitions can be done more easily using log-
ical operations.

lookup tables. As an example, consider the "Video Confer-
ence" DFA in Table 1 that tracks which of the three users A,
B, and C are actively participating in a video call as shown in
Figure 3. To begin, we order the states and assign a number
to each state (Figure 4a), and try to implement the transitions
as a Register Action.
We begin with the input symbol +A, which is triggered

when new traffic from user A is observed. If the old state is
{B}, we need to transition to new state {A,B}, which means
updating the old in-memory value from 2 to 4. Old state {C}
needs to be updated to {A,C} (numerically, 3→5). It appears
that one of the branches in the Register Action can implement
𝑟 ′← 𝑟 + 2. Meanwhile, state ∅ must transition to {A} (0→1),
which is not covered by this branch; we have to use the other
branch to implement 𝑟 ′← 𝑟 + 1. Yet, several states need to
be kept unchanged (1→1, 4→4, 5→5, 7→7). Each Register
Action only has two branches, and we don’t have a third
branch to implement 𝑟 ′← 𝑟 ! The transitions for +A appear
to be too complex to be completed in one Register Action.

The key idea of this paper is that rather than implement-
ing the given DFA as-is, we may implement an isomorphic
one, i.e. we may renumber states in any way that is conve-
nient. Figure 4b shows an alternative number assignment
for the same DFA. Under this numbering, the transition +A
simply sets the first binary bit to 1, and can be implemented
as 𝑟 ′ ← 𝑟 |0b100 unconditionally. Similarly, transition -A
(when user A disconnects) sets the first bit to 0 and can be
expressed as 𝑟 ′← 𝑟&0b011. We further note that transitions
+A, +B, and +C can be executed using the same Register Ac-
tion 𝑟 ′ ← 𝑟 |𝑓 by setting the metadata variable 𝑓 to 0b100,
0b010, or 0b001 respectively ahead of time.

Meanwhile, we also note that we are allowed to choose a
different Register Action based on which symbol we see, as
this information is available once we see the network packet,
before accessing the register memory. We can program a
second Register Action to execute 𝑟 ′← 𝑟&𝑓 . When we need
to perform transitions -A, -B, or -C upon seeing a connection
termination packet, we set the metadata variable 𝑓 to 0b011,
0b101, or 0b110 respectively, and then choose to run the
second Register Action instead of the first one. This way, we
have implemented all six transitions correctly.
With the right numbering, we can share the same opera-

tion when implementing multiple transitions. By carefully
choosing a state-to-number mapping and pre-computing an
auxiliary input 𝑓 , we can actually simplify the computation
required for performing state transitions, and the seemingly
unwieldy DFA can now run smoothly in the data plane.
However, for more complex DFAs, it is challenging and

likely impossible tomanually design the ideal state-to-number
mapping coupled with the correct values for the metadata
variables and which register action to choose. Instead, we
seek help from an SMT solver.

3 SYNTHESIZING STATE MACHINES
USING AN SMT SOLVER

In this section, we discuss how to use an SMT solver to find
a DFA state numbering, such that all its state updates can
be executed as simple arithmetic or logical operations in
data-plane memory.

3.1 Definition and Notation
A DFA is a five-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ), where:

(1) 𝑄 = {𝑞0, 𝑞1, · · · } is a finite set of states; initial state 𝑞0.
(2) Σ = {𝜎0, 𝜎1 · · · } is a finite set of alphabet symbols.
(3) 𝛿 : 𝑄 × Σ→ 𝑄 is the transition function.
(4) 𝐹 ⊆ 𝑄 is the set of accepting states.
Our goal is to find a mapping from states to natural num-

bers 𝑅 : 𝑄 → [2𝑀 − 1] = {0, 1, 2, 3, . . . , 2𝑀 − 1}. Here 𝑀 is
the number of bits stored per memory word, and is usually
chosen between 8, 16, or 32. We require 𝑅 to map states to
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Criteria Symbol
Src=User A,
Dst=AWS,

DPort=8801,
Proto=RTP

“+A”

Src=AWS,
Dst=User A,
SPort=443,
TCP flag=FIN

“-A”

Src=User B… “+B”
… “-B”
… …

(1) User-defined rules
Symbol f #
+A 1 2
-A 6 1
+B 2 2
-B 5 1
+C 4 2
-C 3 1

+B

(2) Numerical mapping

Register memory

r’=6

f=2,
use #2

if true:
r’← r | f

r=4

R(q’) State
0 ∅
4 {A}
2 {B}
1 {C}
6 {A,B}
5 {A,C}
3 {B,C}
7 {A,B,C}

(4) Inverse mapping

New State
{A,B}

(3) Register Actions

Src=1.2.3.4
Dst=5.6.7.8
DPort=8801
Proto=RTP
…

Packet
if true:
r’← r & f

#2

#1

4 6

User-defined DFA

Sym …

… …

R(q’) state

… …
Synthesis

++( )+
Template

cmp sym
sym

sym

op

op

If r :

Else:
r’← r

r’← r
#3cmp sym

sym

sym

op

op

If r :

Else:
r’← r

r’← r #2cmp sym
sym

sym

op

op

If r :

Else:
r’← r

r’← r #1cmp sym
sym

sym

op

op

If r :

Else:
r’← r

r’← r

Figure 5: When a packet arrives in the data plane, it maps to a symbol according
to user-defined rules. We then choose one Register Action and an input value 𝑓

according to the synthesis result. After executing the Register Action, we apply
the inverse mapping to obtain the new state.

If(
Or(

( cmp0=“≤") ∧ (𝑞 ≤ expr0),
( cmp1=“=") ∧ ( 𝑞 = expr0 ), . . . ),
. . . ),

And(
(op0=+⇒ 𝑅(𝑞′)=𝑅(𝑞)+expr1),
(op0=&⇒ 𝑅(𝑞′)=𝑅(𝑞)&expr1), . . . )
. . . ),

And(
(op1=+⇒ 𝑅(𝑞′)=𝑅(𝑞)+𝑒𝑥𝑝𝑟2),
(op1=−⇒ 𝑅(𝑞′)=𝑅(𝑞)-𝑒𝑥𝑝𝑟2), . . . )
. . . )

), ∀𝑞, 𝜎, 𝑞′ = 𝛿 (𝑞, 𝜎)

Figure 6: Different implementa-
tions of state transitions are for-
mulated as SMT constraints.

unique numbers because we also need to map the numbers
in memory back to states using the inverse mapping 𝑅−1.
Besides the state mapping 𝑅, we also define two more

mapping functions from the transition symbols to numbers,
𝑓 , 𝑔 : Σ → [2𝑀 − 1], as Register Actions can take at most
two variables as input. They are used as operands in the
arithmetic operations to update the in-memory value. For
example, if we can find 𝑓 such that 𝑅(𝑞′) = 𝑅(𝑞) + 𝑓 (𝜎)
satisfies all transitions 𝑞′ = 𝛿 (𝑞, 𝜎), we can simply perform
𝑟 ′← 𝑟 + 𝑓 in the Register Action.

Finally, when multiple Register Actions are used, we also
define a functionwhichop: Σ→ {1, 2, . . . } to designate which
Register Action a transition uses for the memory update.

3.2 Hardware Implementation
Figure 2 presents a template for a Register Action, which
corresponds to a conditional memory update operation using
arithmetic and logical operations supported by the switch.
When we run the Register Action, based on a comparison
result, we have to reach the desired new in-memory value 𝑟 ′
from the old value 𝑟 via a single operation 𝑟 ′← 𝑟 op sym ,
where op is an arithmetic or logical operation and sym is
either a constant or a value already stored in packet header
or metadata. This means we need to satisfy an equation
𝑅(𝑞′) = 𝑅(𝑞) op sym , i.e., transform 𝑅(𝑞) into 𝑅(𝑞′) using
a single operation for all transitions.
Fortunately, basic arithmetic and logical operations are

expressive enough for us to manipulate the in-memory value
to create complex updates. Here we make an important ob-
servation: we can apply arbitrarily complex 𝑓 (𝜎) and 𝑔(𝜎)
mappings by using lookup tables in pre-processing, since
we know 𝜎 before accessing the register memory. Also, we

can choose any state-to-number mapping 𝑅 as long as the
inverse number-to-state mapping 𝑅−1 exists.
Figure 5 illustrates the workflow of our hardware data-

plane program:

(1) User-defined application logic first maps a packet (or
a series of packets) to a particular transition symbol 𝜎 .
Here we also derive an array index, if the register
memory array contains DFAs for multiple flows.

(2) Pre-processing: given 𝜎 , we calculate 𝑓 (𝜎) and 𝑔(𝜎),
as well as which Register Action to apply.

(3) By executing the chosen Register Action, with 𝑓 (𝜎)
and 𝑔(𝜎) as input, we update the old value stored in
memory 𝑟 into the new value 𝑟 ′, which is returned.
This step needs to guarantee that for any state 𝑞 where
𝑟 = 𝑅(𝑞), we have 𝑟 ′ = 𝑅(𝑞′) where 𝑞′ = 𝛿 (𝑞, 𝜎) is the
new state.

(4) Post-processing: given 𝑅(𝑞′), we use the inverse map-
ping to obtain the new state 𝑞′, and pass it back to the
application logic.

By storing different instances of a DFA in a register mem-
ory array and using a flow ID to generate the array index, we
can have one DFA instance per flow for millions of different
flows.

3.3 Synthesizing Mappings
Although it is possible to manually design the numerical
mappings given a particular DFA, it is a tedious and difficult
process for most DFAs. Furthermore, this process needs to be
coupled with finding the correct combinations of comparison
and arithmetic or logical operations for each Register Action.
Instead, we can use the help from an SMT solver, which

is designed to search for solutions given various constraints
between variables. We transform the pseudocode template
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shown in Figure 2 into variable constraints shown in Fig-
ure 6 and task the SMT solver with finding the right variable
assignments, including the choice of operands as well as the
numerical mappings.

The variables in our SMT query are:

(1) A BitVector variable representing 𝑅(𝑞) for each state
𝑞;

(2) For each letter 𝜎 , two BitVector variables represent-
ing the values of 𝑓 (𝜎) and 𝑔(𝜎), as well as boolean
indicator variables representing whichop (𝜎);

(3) For each Register Action, ⌈log2 𝑁 ⌉ boolean variables
representing which of the 𝑁 choices it is making for
arguments and operators to use.

The constraints include:

(1) Constraints specifying that each state 𝑞 is mapped to
a unique number 𝑅(𝑞);

(2) For each transition 𝑞×𝜎 → 𝑞′ ∈ 𝛿 , given the choice of
Register Action and 𝑓 (𝜎), 𝑔(𝜎), the Register Action’s
expression evaluates to 𝑅(𝑞′) correctly.

If a satisfying solution is found, it will include the state-
to-number mapping 𝑅, as well as the 𝑓 , 𝑔 and whichop func-
tions. We use them to populate the lookup table in the pre-
processing step, and also initialize the values stored in mem-
ory to the number corresponding to the initial state, 𝑅(𝑞0).
For convenience, we can also add a constraint requiring
𝑅(𝑞0)=0 so we don’t need to initialize a zeroed-out register
memory. The Register Actions themselves can be set up by
filling in the template using the boolean indicator variables,
which chooses the comparison and arithmetic or logical op-
erators. Finally, we can set up the post-processing lookup
table using the inverse of state-to-number mapping 𝑅−1.

4 OPTIMIZING FOR EXPRESSIVENESS
AND SYNTHESIS TIME

The basic synthesis technique described in Section 3 is suffi-
cient for executing simple DFAs in the data plane. However,
sometimes the solver struggles to find a model for more com-
plex DFAs, either taking too long to find a solution (timeout)
or reporting it is impossible to find a mapping (unsatisfiable).
We describe how we use multiple code templates to balance
between expressiveness and solving time.
The Tofino programmable switch supports a rather com-

plex conditional update logic inside a Register Action. Al-
though using the most expressive template provides the most
possibility for synthesizing complex DFAs, such expressive-
ness is often unnecessary and slows down the synthesis
significantly.

Instead, we prepared several different Register Action tem-
plates with varying complexities, as shown in Figure 7. Some-
times the expressiveness of complex templates are necessary

as the simpler ones will cause the SMT solver fail to find
any solution (output “unsatisfiable”); other times a simpler
template is sufficient and will help the solver find a solution
much faster. We also note that we have the option to use
one or multiple Register Actions, and restricting the solver
to use only one or two fewer Register Actions also reduces
synthesis time (at the cost of expressiveness).

Note that the two most complex templates (Figure 7d and
7e) use a hardware feature available on Tofino called “paired
mode” that stores a pair of two integers (𝑟0, 𝑟1) in one register
memory address. For these templates, we define the state-to-
number mapping using two functions 𝑅0, 𝑅1 : 𝑄 → {0, 1}𝑀
in the synthesis, and only require 𝑅0 (𝑞) to be unique across
different states (and use it for the inverse lookup). Although
these Register Action templates are tailored for the Tofino
switch, we could synthesize for different programmable hard-
ware by removing unsupported templates and adding new
ones matching the hardware’s capability. In Section 5 we
show empirical evaluation results comparing the solving
time and expressiveness when using different templates, as
well as varying the number of arithmetic and logical opera-
tors to choose from.

In practice, given an input DFA with unknown complexity,
we run multiple solver instances in parallel using different
template configurations until any one instance returns a
satisfying assignment.

5 EVALUATION
We run evaluation experiments to investigate how to achieve
the best performance by choosing the right level of expres-
siveness during synthesis. In this section, we present the
solving time for DFAs using different templates, as well as
insights we learned from the experiments and a prototype
for the Tofino programmable switch. Our framework success-
fully synthesized data-plane representations of all example
DFAs presented in Table 1 in under 6 minutes.

5.1 Experiment Setup
We use z3 [4, 14] v4.8.17 as our SMT solver. Our python
driver program parses and validates the DFA using a custom-
defined JSON format, and generates the SMT constraints for
solving; it has approximately 500 lines of code. Separately,
we have a data-plane Register Action simulator script that
validates the solver’s output.

All our experiments run on a server with twoAMD 48-core
CPUs (3.1Ghz) and 256GB memory, running Ubuntu 20.04.
We disabled Z3’s multi-threading and run all experiments in
single-thread mode, with timeout set to one hour.
We use several DFAs representative of practical network

measurement workload to benchmark our technique. First,
we use the examples in Table 1: tracking a TCP handshake,
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Key: cmp ∈ {≤,=, ≥,≠}, asgn ∈ { 𝑟 ,f,g,const}, op ∈ {+,−,&, |,
⊕
}, sym ∈ {f,g,const}, con ∈ {&, |, left, right},

st𝑠 ∈ {𝑟 ,const}, st𝑝 ∈ {𝑟0, 𝑟1, const}, pred𝑠 := ( st𝑠 + sym + const cmp 0), pred𝑝 := ( st𝑝 + sym + const cmp 0).

If pred𝑠 :
𝑟 ′← asgn

Else:
𝑟 ′← asgn

(a) Assignment

If pred𝑠 :
𝑟 ′← st𝑠 op sym

Else:
𝑟 ′← st𝑠 op sym

(b) Conditional

If ( pred𝑠 ) con ( pred𝑠 ):
𝑟 ′← st𝑠 op sym

Else:
𝑟 ′← st𝑠 op sym

(c) Two Conditions

If ( pred𝑝 ) con ( pred𝑝 ):
𝑟 ′0← st𝑝 op sym
𝑟 ′1← st𝑝 op sym

Else:
𝑟 ′0← st𝑝 op sym
𝑟 ′1← st𝑝 op sym

(d) Paired

If ( pred𝑝 ) con ( pred𝑝 ):
𝑟 ′0← st𝑝 op sym

Else: 𝑟 ′0← st𝑝 op sym
If ( pred𝑝 ) con ( pred𝑝 ):

𝑟 ′1← st𝑝 op sym
Else: 𝑟 ′1← st𝑝 op sym

(e) Paired+TwoBranch

Figure 7: Each bubble indicates a distinct choice that the solver makes among the options indicated for that color.
Different Register Action pseudocode templates provide a trade-off between expressiveness and synthesis speed.

Input DFA Assignment Conditional TwoCond Paired Paired +
TwoBranch

Mobile Device 0.50s 1.58s 2.20s 2.61s 4.52s
Video Conf. unsat (0.83s) 13.61s 5.93s 155.8s 715.9s

TCP Handshake unsat (0.71s) 224.9s 2.16s 8.83s 49.85s
Simple 0.12s 0.17s 0.24s 0.65s 0.71s

Parallel-2 1.36s 1.72s 4.37s 7.61s 7.63s
Parallel-3 13.46s 30.05s 37.27s 92.37s 106.1s
Parallel-4 126.8s 351.9s 377.3s 990.1s 931.4s

Sequential-2 0.96s 2.02s 3.48s 6.85s 9.62s
Sequential-3 timeout timeout timeout 913.5s timeout
Sequential-4 timeout timeout timeout timeout timeout
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1x8 unsat (0.64s) 270s / 61% 161s / 93% 126s / 100% 227s / 100%
1x10 unsat (0.82s) 530s / 33% 377s / 86% 332s / 100% 833s / 96%
1x12 unsat (1.12s) 660s / 16% 553s / 74% 786s / 95% 1587s / 65%
1x16 unsat (1.67s) 110s / 2% 1295s / 29% 1704s / 44% 2252s / 16%
2x4 unsat (0.94s) 350s / 46% 289s / 90% 244s / 100% 534s / 100%
2x6 unsat (1.43s) 1100s / 8% 873s / 41% 1575s / 81% 1875s / 41%
2x8 unsat (2.12s) 858s / 1% 1374s / 17% 1505s / 24% 1916s / 3%
3x4 unsat (1.86s) 1250s / 12% 993s / 42% 1390s / 74% 1829s / 52%
4x4 unsat (2.86s) all timeout 2345s / 4% 2197s / 17% 1915s / 11%

Table 8: Synthesis time for DFAswith different Register
Action templates of varying expressiveness.

video conference participants, and mobile device state. These
three DFAs are all moderately complex, with 7, 8, and 5 states
respectively (and all have 6 symbols).
For video fingerprinting, we need to match quantized

video segment sizes against a fingerprint string. To obtain
strings for testing, We randomly sampled video segment
size patterns from a video fingerprinting dataset provided
by Reed and Kranch [10] and quantized the sizes into 16
levels. The “1x12” experiment matches the input to an indi-
vidual video’s fingerprint with length 12. We also attempt to
match one input against multiple fingerprint strings simulta-
neously; for example, “2x8” means simultaneously matching
against 2 fingerprint strings, both with length 8. The DFA
needs to report which, if any, fingerprint matches with the
input sequence. For each experiment, we generate 100 DFAs
using different fingerprint strings.
To further challenge our synthesis framework, we also

create artificially complex DFAs using composition. Inspired
by Kinetic [8], we composemultiple copies of a simple 3-state,
3-symbol DFA into a larger DFA:

• In parallel composition, the larger DFA takes in a tuple
of multiple symbols for each transition step, and per-
form transitions for each underlying DFA individually
using one of the symbols. The 2nd, 3rd, and 4th-order
composition has 9, 27, and 81 states respectively, with
the same number of symbols as the number of states.
• In sequential composition, the larger DFA takes in
the same symbol tuple at a time but only perform
the transition for one underlying DFA; it starts at the
first underlying DFA and only moves on to the next
one once the earlier one is at its accepting state. The
2nd, 3rd, and 4th-order composition has 9, 27, and 81
transitions, and 6, 9, and 12 states respectively.

5.2 Register Action Templates
Table 8 shows the time it takes to synthesize mappings using
different Register Action templates, which represent different
levels of expressiveness. All synthesis runs use 4 Register Ac-
tions and bit width𝑀=8. The string matching results shown
in Table 8 have two metrics: the fraction of sampled DFAs
that are successfully synthesized, as well as the average time
spent for non-timeout synthesis runs.

As we can see, using the Two Conditions template is suffi-
cient for synthesizing most DFAs, as it strikes a good balance
between performance and expressiveness. However, string
matching DFAs are more challenging and require the more
expressive Paired template for a high success rate. Mean-
while, themost expressive Paired+TwoBranch template often
timed out because of its complexity.

5.3 Choices of Operators
We also analyze the best set of arithmetic and logical op-
erators to consider during synthesis. Figure 9 shows the
“slowdown” of synthesis time when considering 3, 4, 6, and
13 different arithmetic and logical operators as part of the
Register Action template, compared to successful synthe-
sis runs using only addition operation. 3 uses subtraction
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Figure 9: Synthesis time increases as we allow more
arithmetic and logical operators to be used.

Resource ALU TCAM Instr. words Hash Units
Utilization 2.1% 0.5% 3.1% 1.4%
Table 10: Hardware resource utilization for Tofino.

in two directions besides addition; 4 adds XOR, and 6 adds
AND/OR. Finally, 13 means we consider all variants of the
bitwise logical operators (NAND, NOR, etc) that use bitwise
NOT before the operands. As we can see from Figure 9, the
synthesis time grows slowly with the number of arithmetic
and logical operators considered. However, there is also some
non-monotonicity, possibly because the extra expressiveness
brought by the additional operators allows the solver to find
a simpler solution faster. Also, the solver often fails to find
a solution for other more complex DFAs using only arith-
metic operators (addition and subtraction). It appears that
using 4-6 operators (addition and subtractions, alongside
AND/OR/XOR) strikes a good balance between expressive-
ness and performance.

We also note that the SMT solver uses more memory when
the synthesis uses more arithmetic and logical operators. In
our experiment, each synthesis run costs 2-4GB of memory
when using 4-6 operators; however, this grows to 40GBwhen
all 13 operators are used. This further signifies the need to
avoid using an unnecessarily large set of operators.

5.4 Running on Switch Hardware
We built a code generator that transforms an SMT model
into P4 code templates. Using the template, the program-
mer completes the program by filling in the mapping from
packet header fields to DFA symbols and by programming
the actions to be taken in each DFA state. Table 10 presents
the resources used when compiling the P4 program for the
Mobile Device example. Note that the resource utilization
is nearly constant regardless of what DFA is being imple-
mented, as the complexity of the DFA is embedded in the
Register Action micro-programs and the numerical map-
ping. Meanwhile, the SRAM utilization depends only on the
number of DFA instances allocated. Allocating 262,144 DFA
instances with𝑀=8-bit uses 5.7% of total SRAM available.

6 RELATEDWORK
A number of data plane technologies use regular expres-
sions and/or automata to analyze traffic. For instance, Jepsen
et al. [7] will identify whether the contents of a single packet
match a regular expression. BOLT [12] is similar, though it
attempts to match a number of different patterns in parallel.
Rather than analyzing the contents of a single packet, our
tool is designed to analyze a series of packets and to recog-
nize whether that series of packets adheres to some protocol,
expressed as a state machine.
DBVal [9] allows programmers to specify and monitor

the sequence of tables and actions that is applied to a single
packet as it passes through the programmable switch. It uses
the Ball-Larus encoding [1] to minimize the number of bits
required to identify a particular control-flow path through
the switch program. Again, our goal, and the underlying
algorithms, are different as we are attempting to identify
patterns in a series of packets, rather than one, and to so
efficiently, we must squeeze our implementation into a single
stage. The Bell-Larus encoding trick is not useful here.
NetQRE [13] uses regular expressions to define queries

over a sequence of network packets, which can be translated
into finite state machines. NetQRE’s implementation runs
these queries on a CPU—the key contribution of the current
is to demonstrate how such queries could be implemented
on a programmable switch such as the Intel Tofino.
Chipmunk [5] uses syntax-guided program synthesis to

automatically generate user-specified transaction logic writ-
ten in the high-level Domino [11] language for the data plane.
A key difference is that Chipmunk is solving a more general
code generation problem and hence is more constrained in
its solution. Our system exploits the fact that we are synthe-
sizing state machines, which are equivalent up to consistent
renumbering of states.

7 CONCLUSION
We present a tool that transforms state machine specifi-
cations into efficient implementations for programmable
switches such as the Intel Tofino. The key idea is to ex-
ploit the fact that a given state machine has many seman-
tically equivalent implementations: By changing the state
numbering and implementing transitions using the avail-
able arithmetic and logic operations, one may implement
state machines of surprising complexity in a single stage
of a programmable switch. If the state machine semantics
and the constraints of the underlying hardware are specified
using logical formula, an off-the-shelf SMT solver such as Z3
is able to find numberings and transition implementations
automatically. We show that synthesis takes 3-6 minutes on
a range of useful examples.
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